Lysine 106 of the putative catalytic ATP-binding site of the Bacillus subtilis SecA protein is required for functional complementation of Escherichia coli secA mutants in vivo.
نویسندگان
چکیده
The SecA protein is a major component of the cellular machinery that mediates the translocation of proteins across the Escherichia coli plasma membrane. The secA gene from Bacillus subtilis was cloned and expressed in E. coli under the control of the lac or trc promoter. The temperature-sensitive growth and secretion defects of various E. coli secA mutants were complemented by the B. subtilis SecA protein, provided the protein was expressed at moderate levels. Under overproduction conditions, no complementation was observed. One of the main features of the SecA protein is the translocation ATPase activity which, together with the protonmotive force, drives the movement of proteins across the plasma membrane. A putative ATP-binding motif can be identified in the SecA protein resembling the consensus Walker A type motif. Replacement of a lysine residue at position 106, which corresponds to an invariable amino acid residue, in the consensus motif by asparagine (K106N) resulted in the loss of the ability of the B. subtilis SecA protein to complement the growth and secretion defects of E. coli secA mutants. In addition, the presence of the K106N SecA protein interfered with protein translocation, most likely at an ATP-requiring step. We conclude that lysine 106 is part of the catalytic ATP-binding site of the B. subtilis SecA protein, which is required for protein translocation in vivo.
منابع مشابه
Characterization of Structure and Function of SECA Domains
SecA is a central component of the general secretion system that is essential for growth and virulence of bacteria. A series of fluorescein analogs were tested against ATPase activities of Escherichia coli SecA. Rose Bengal (RB) and Erythrosin B are potent inhibitors abolishing the activities of three forms of SecA ATPase with IC50 in μM range. Both inhibit SecA intrinsic ATPase with two mechan...
متن کاملBiochemical characterization of the SecA protein of Streptomyces lividans--interaction with nucleotides, binding to membrane vesicles and in vitro translocation of proAmy protein.
The SecA protein of Streptomyces lividans was purified to near electrophoretic homogeneity by means of FPLC from an overproducing strain harbouring plasmid pULA400, in which the secA gene (Blanco, J., Coque, J. J. R. & Martín, J. F. (1996) Gene (Amst.) 176, 61-65) was expressed from the strong promoter of the Streptomyces griseus saf gene. The native form of SecA was shown to be a dimer (Mr 209...
متن کاملFunctional implementation of the posttranslational SecB-SecA protein-targeting pathway in Bacillus subtilis.
Bacillus subtilis and its close relatives are widely used in industry for the Sec-dependent secretory production of proteins. Like other Gram-positive bacteria, B. subtilis does not possess SecB, a dedicated targeting chaperone that posttranslationally delivers exported proteins to the SecA component of the translocase. In the present study, we have implemented a functional SecB-dependent prote...
متن کاملPreprotein translocation by a hybrid translocase composed of Escherichia coli and Bacillus subtilis subunits.
Bacterial protein translocation is mediated by translocase, a multisubunit membrane protein complex that consists of a peripheral ATPase SecA and a preprotein-conducting channel with SecY, SecE, and SecG as subunits. Like Escherichia coli SecG, the Bacillus subtilis homologue, YvaL, dramatically stimulated the ATP-dependent translocation of precursor PhoB (prePhoB) by the B. subtilis SecA-SecYE...
متن کاملAdditional in vitro and in vivo evidence for SecA functioning as dimers in the membrane: dissociation into monomers is not essential for protein translocation in Escherichia coli.
SecA is an essential component in the Sec-dependent protein translocation pathway and, together with ATP, provides the driving force for the transport of secretory proteins across the cytoplasmic membrane of Escherichia coli. Previous studies established that SecA undergoes monomer-dimer equilibrium in solution. However, the oligomeric state of functional SecA during the protein translocation p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 268 6 شماره
صفحات -
تاریخ انتشار 1993